

NAD/NADH Microplate Assay Kit User Manual

Catalog # CAK1008

(Version 2.4F)

Detection and Quantification of NAD/NADH Content in Urine,
Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and
Other biological fluids Samples.

For research use only. Not for diagnostic or therapeutic procedures.

I. INTRODUCTION	2
II. KIT COMPONENTS	3
III. MATERIALS REQUIRED BUT NOT PROVIDED	4
IV. SAMPLE PREPARATION	5
V. ASSAY PROCEDURE	7
VI. CALCULATION	8
VII. TYPICAL DATA	10
VIII. TECHNICAL SUPPORT	10
IX NOTES	10

I. INTRODUCTION

Nicotinamide adenine dinucleotide (NAD⁺) is a vital coenzyme found in all cells. As NAD⁺ is involved in redox reactions, it is found in two forms in cells. NAD⁺ is an oxidizing agent and becomes reduced to form NADH, which can be used as a reducing agent. As a result, it plays a key role in metabolism and other cellular processes. In organisms, NAD⁺ can be synthesized de novo from tryptophan or aspartic acid. Because of the wide variety of functions that NAD⁺ plays, it is a popular target for pharmaceuticals.

NAD/NADH Microplate Assay Kit provides a simple and direct procedure for measuring NAD+/NADH levels in a variety of samples. The kit is based on an alcohol dehydrogenase cycling reaction, in which the formed NADH reduces a formazan reagent. The intensity of the reduced product color, measured at 450 nm, is proportionate to the NAD+/NADH concentration in the sample.

II. KIT COMPONENTS

Component	Volume	Storage
96-Well Microplate	1 plate	
Assay Buffer	30 ml x 2	4 °C
Reaction Buffer	10 ml x 1	4 °C
Enzyme	Powder x 1	-20 °C
Substrate	10 ml x 1	4 °C
Dye Reagent A	Powder x 1	4 °C
Dye Reagent B	1 ml x 1	4 °C
Standard	Powder x 1	-20 °C, keep in dark
Technical Manual	1 Manual	

Note:

Dye Reagent A: add 1 ml distilled water to dissolve before use, mix. Store at -20°C for a month.

Enzyme: add 1 ml Reaction Buffer to dissolve before use, mix. Store at -80°C for a month.

Standard: add 1 ml distilled water to dissolve, mix; then add 25 μ l solution into 975 μ l distilled water, mix. The concentration will be 50 μ mol/L. Store at -20°C for a month.

III. MATERIALS REQUIRED BUT NOT PROVIDED

1.	Micropl	ate re	eader to	o read	absorbance	at 45	0 nm
----	---------	--------	----------	--------	------------	-------	------

- 2. Distilled water
- 3. Pipettor, multi-channel pipettor
- 4. Pipette tips
- 5. Mortar
- 6. Ice
- 7. Centrifuge
- 8. Timer
- 9. Water bath

IV. SAMPLE PREPARATION

1. For serum or plasma samples

Total NADH and NAD+:

Detect directly or dilute with distilled water.

NAD⁺ Decomposition:

To detect NADH, the NAD⁺ needs to be decomposed before the reaction. Keep some samples at 60 °C for 30 min in water bath to completely decompose the NAD⁺. Cool samples on ice. Centrifuge at 8000g 4 °C for 10 minutes and transfer the supernatant into a new centrifuge tube, keep it on ice for detection.

2. For tissue samples

Total NADH and NAD+:

Weigh out 0.05 g tissue, homogenize with 500 μ l Assay Buffer on ice; centrifuged at 8000g 4 °C for 10 minutes, transfer the supernatant into a new centrifuge tube, keep it on ice for detection.

NAD⁺ Decomposition:

To detect NADH, the NAD⁺ needs to be decomposed before the reaction. Keep some samples at 60 °C for 30 min in water bath to completely decompose the NAD⁺. Cool samples on ice. Centrifuge at 8000g 4 °C for 10 minutes and transfer the supernatant into a new centrifuge tube, keep it on ice for detection.

3. For cell and bacteria samples

Total NADH and NAD+:

Collect cell or bacteria into centrifuge tube, discard the supernatant after centrifugation, add 500 μ l Assay Buffer for 500×10^4 cell or bacteria, sonicate (with power 20%, sonication 2s, intervation 1s, repeat 30 times); Centrifuge at 8000g 4 °C for 10 minutes and transfer the supernatant into a new centrifuge tube; keep it on ice for detection.

NAD⁺ Decomposition:

To detect NADH, the NAD⁺ needs to be decomposed before the reaction. Keep some samples at 60 °C for 30 min in water bath to completely decompose the NAD⁺. Cool samples on ice. Centrifuge at 8000g 4 °C for 10 minutes and transfer the supernatant into a new centrifuge tube, keep it on ice for detection.

V. ASSAY PROCEDURE

Add following reagents into the microplate:

Reagent	Sample	Sample	Standard	Blank
	(Total)	(NADH)		
Sample	20 μΙ	20 μΙ		
Standard			20 μΙ	
Distilled water				20 μΙ
Reaction Buffer	70 μΙ	70 μΙ	70 μl	70 μΙ
Enzyme	10 μΙ	10 μΙ	10 μΙ	10 μΙ
Substrate	80 μl	80 μΙ	80 μΙ	80 μΙ
Dye Reagent A	10 μΙ	10 μΙ	10 μΙ	10 μΙ
Dye Reagent B	10 μΙ	10 μΙ	10 μΙ	10 μΙ

Mix, keep in dark for 10 minutes at room temperature, record absorbance measured at 450 nm.

Note:

- 1) Perform 2-fold serial dilutions of the top standards to make the standard curve.
- 2) The concentrations can vary over a wide range depending on the different samples. For unknown samples, we recommend doing a pilot experiment & testing several doses to ensure the readings are within the standard curve range.
- 3) Reagents must be added step by step, can not be mixed and added together.

VI. CALCULATION

1. According to the volume of sample

NAD/NADH (
$$\mu$$
mol/ml) = (C_{Standard} × V_{Standard}) × (OD_{Sample(Total)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / V_{Sample}

$$= 0.05 \times (OD_{Sample(Total)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank})$$
NADH (μ mol/ml) = (C_{Standard} × V_{Standard}) × (OD_{Sample(NADH)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / V_{Sample}

$$= 0.05 \times (OD_{Sample(NADH)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank})$$
NAD+ (μ mol/ml) = NAD/NADH (μ mol/ml) - NADH (μ mol/ml)

2. According to the weight of sample

NAD/NADH (
$$\mu$$
mol/g) = (C_{Standard} × V_{Standard}) × (OD_{Sample(Total)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / (W × V_{Sample} / V_{Assay})
$$= 0.025 \times (OD_{Sample(Total)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / W$$
NADH (μ mol/g) = (C_{Standard} × V_{Standard}) × (OD_{Sample(NADH)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / (W × V_{Sample} / V_{Assay})
$$= 0.025 \times (OD_{Sample(NADH)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / W$$
NAD+ (μ mol/g) = NAD/NADH (μ mol/g) - NADH (μ mol/g)

3. According to the quantity of cells or bacteria

NAD/NADH (
$$\mu$$
mol/10⁴) = (C_{Standard} × V_{Standard}) × (OD_{Sample(Total)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / (N × V_{Sample} /V_{Assay})
$$= 0.025 \times (OD_{Sample(Total)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / N$$
NADH (μ mol/10⁴) = (C_{Standard} × V_{Standard}) × (OD_{Sample(NADH)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / (N × V_{Sample} /V_{Assay})
$$= 0.025 \times (OD_{Sample(NADH)} - OD_{Blank}) / (OD_{Standard} - OD_{Blank}) / N$$
NAD+ (μ mol/10⁴) = NAD/NADH (μ mol/10⁴) - NADH (μ mol/10⁴)

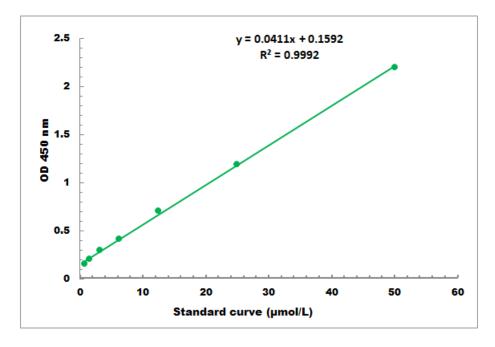
C_{Protein}: the protein concentration, mg/ml;

 $C_{Standard}$: the protein concentration, 50 μ mol/L = 0.05 μ mol/ml;

W: the weight of sample, g;

 V_{Sample} : the volume of sample, 0.02 ml;

 $V_{Standard}$: the volume of sample, 0.02 ml;


V_{Assay}: the volume of Assay Buffer, 0.5 ml;

N: the quantity of cell or bacteria, $N \times 10^4$.

VII. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.

Detection Range: 0.5 μmol/L - 50 μmol/L

VIII. TECHNICAL SUPPORT

For troubleshooting, information or assistance, please go online to www.cohesionbio.com or contact us at techsupport@cohesionbio.com

IX. NOTES